Abstract
CONTEXT: Polycystic ovary syndrome (PCOS) is a common complex genetic disease. It is characterized by hyperandrogenism, gonadotropin secretory changes, polycystic ovarian morphology, and insulin resistance. The etiology of PCOS remains unknown, but modern genetic approaches, such as genome-wide association studies (GWAS), Mendelian randomization, and next-generation sequencing, promise to identify the pathways that are primarily disrupted. EVIDENCE ACQUISITION: The literature on PCOS, including the author's research, is discussed. EVIDENCE SYNTHESIS: Recent genetic analyses are reviewed.
CONCLUSIONS: Considerable progress has been made mapping PCOS susceptibility genes. GWAS have implicated gonadotropin secretion and action as important primary defects in disease pathogenesis in European and Han Chinese PCOS cohorts, respectively. European women with the National Institutes of Health and Rotterdam phenotypes as well as those with self-reported PCOS have some gene regions in common, such as chromosome 11p14.1 region containing the FSH B polypeptide (FSHB) gene, suggesting shared genetic susceptibility. Several chromosomal signals are significant in both Han Chinese and European PCOS cohorts, suggesting that the susceptibility genes in these regions are evolutionarily conserved. In addition, GWAS have suggested that DENND1A, epidermal growth factor signaling, and DNA repair pathways play a role in PCOS pathogenesis. Only a small amount of the heritability of PCOS is accounted for by the common susceptibility variants mapped so far. Future studies should clarify the contribution of rare genetic variants and epigenetic factors to the PCOS phenotype. Furthermore, Mendelian randomization can be used to clarify causal relationships, and phenome-wide association studies can provide insight into health risks associated with PCOS susceptibility variants.