Abstract
AIM: To explore the pattern of expression of circulating miRNAs in patients with polycystic ovary syndrome (PCOS). MATERIALS AND
METHODS: Microarray and qRT-PCR were used to investigate circulating miRNAs in PCOS during clinical diagnosis. The targets of dys-regulated miRNAs were predicted using bioinformatics, followed by function and pathway analysis using the databases of Gene Ontology and the KEGG pathway.
RESULTS: BMI, triglyceride, HOMA-IR, Testosterone and CRP levels were significantly higher, while estradiol was significantly lower in PCOS than in control groups. After SAM analysis, 5 circulating miRNAs were significantly up-regulated (let-7i-3pm, miR-5706, miR-4463, miR-3665, miR-638) and 4 (miR-124-3p, miR-128, miR-29a-3p, let-7c) were down-regulated in PCOS patients. Hierarchical clustering showed a general distinction between PCOS and control samples in a heat map. After joint prediction by different statistical methods, 34 and 41 genes targeted were up-and down-regulated miRNAs, in PCOS and controls, respectively. Further, GO and KEGG analyses revealed the involvement of the immune system, ATP binding, MAPK signaling, apoptosis, angiogenesis, response to reactive oxygen species and p53 signaling pathways in PCOS.
CONCLUSIONS: We report a novel non-invasive miRNA profile which distinguishes PCOS patients from healthy controls. The miRNA-target database may provide a novel understanding of PCOS and potential therapeutic targets.